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Abstract. There are two routes in the opening of the pseudogap: one due to the band separation
in a disordered system such as expanded liquid mercury and amorphous alloys and the other
due to the Fermi surface–Brillouin zone interaction in quasicrystals and their approximants.
The role of the pseudogap in the electron transport has been studied by plotting resistivities
at 4.2 and 300 K against the electronic specific heat coefficient for a total of 49 quasicrystals
and their approximants on the log–log diagram in comparison with those for the amorphous
alloys. Among them, 32 data points are for sp-electron quasicrystals and their approximants like
Al–Mg–Zn, Al–Li–Cu, Mg–Zn–Ga while 17 data points are for the Mackay icosahedral-type
quasicrystals like Al–Cu–Fe and Al–Cu–Ru. All the data except for the Al–Pd–Re quasicrystal
of high quality are found to fall on a straight line with a slope of−2. Whether or not the
data for the Al–Pd–Re quasicrystal of high quality can be treated on the same footing is left
for further investigation. From this we conclude that the resistivity changes in proportion to the
square of the density of states (DOS) at the Fermi level in conformity with the Mott theory for
all systems characterized by the pseudogap across the Fermi level.

1. Introduction

The presence of the pseudogap across the Fermi levelEF in quasicrystals and their
approximants has received strong attention both from the theoretical and experimental point
of view and, particularly, attention has been focused on its possible role in lowering the
electronic energy in favour of these complex electron compounds and in enhancing the
electrical resistivity up to the level of doped semiconductors [1, 2]. It is, therefore, of great
interest to examine how the residual resistivity is related to the depth of the pseudogap,
which certainly depends on the quasicrystal chosen.

Mott [3] defined the pseudogap in a disordered system as a density of states (DOS)
minimum arising from the two overlapping bands and described its depth in terms of the so
calledg-parameter defined as the ratio of the DOS atEF , N(EF ), over the corresponding
free electron valueN(EF )f ree. He argued that the transport theory based on the Boltzmann
transport equation is valid when the scattering is weak, but that the conductivity decreases
asg2 when the Fermi level falls in the pseudogap and the mean free path of the conduction
electron3F is constrained by an average atomic distancea.

The pseudogap opens in two different routes: one due to the separation of the
overlapping bands in a disordered system as in expanded liquid metals [4] and the other
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due to the Fermi surface–Brillouin zone interaction in an ordered system as in crystals and
quasicrystals [1, 2]. It is certainly interesting to study whether the Mott mechanism proposed
for a disordered system can be extended to quasicrystals and their approximants having the
pseudogap originating from the Fermi surface–Brillouin zone interaction.

We show in this work that the role of the pseudogap in the electrical conductivity or the
residual resistivity of quasicrystals and their approximants can be discussed with reference
to theg-parameter in the same manner as for the sp-electron amorphous alloys and liquid
metals. However, the evaluation of theg-parameter becomes difficult in the d-electron
systems containing the transition metal element as a major component, since the value of
N(EF )

f ree cannot be reliably estimated. In order to facilitate more universal discussion by
covering both sp- and d-electron systems, we directly focus on the DOS at the Fermi level
without taking its ratio over the corresponding free electron value.

Sets of the resistivity at 4.2 and 300 K and the electronic specific heat coefficient data
available in the literature for icosahedral quasicrystals and their approximants, together
with sp-electron amorphous alloys, are plotted on the log–log diagram. We show that the
resistivity, particularly at 300 K, is inversely proportional to the square of the DOS at the
Fermi level for systems having the pseudogap across the Fermi level. This universal relation
is complementary to theg2-dependence of the conductivity but holds more universally by
including not only the sp-electron systems but also the d-electron systems. By making use
of this universal relation, we discuss the scattering mechanism in quasicrystals and their
approximants in comparison with that in amorphous alloys.

2. Test ofg2-dependence of the conductivity in sp-electron systems

According to Mott [3], the conductivity at 0 K,σ0, is expressed as a function of theg-
parameter in the form of

σ0 = g2e23FS
f ree

F /12π3h̄ (1)

whereSf reeF is the area of the free electron Fermi surface. Other symbols carry the usual
meanings. The scattering probability, 1/τ , must be proportional to the final DOS at the
Fermi level,N(EF ) or theg-parameter within the second-order perturbation theory. Mott
noted that the mean free path in equation (1) would be replaced by3F = 3free

F /g2 in the
weak scattering limit, since the Fermi velocity given by ¯h−1∂E/∂k is inversely proportional
to theg-parameter when the Fermi surface approaches the zone boundary in the nearly free
electron approximation. Then equation (1) becomes independent of theg-parameter and
is reduced to the free electron expressionσ0 = e23

free

F S
f ree

F /12π3h̄, where the mean free
path3free

F is determined by the first-order perturbation and is much longer than an average
atomic distance. This means that the electron transport can be described in the context of
the Boltzmann transport equation coupled with the nearly free electron model in the weak
scattering limit of3F � a. Instead, when the Fermi level falls into a deep valley of the
pseudogap and theg-parameter is lowered below unity, the scattering is no longer treated
in the nearly free electron approximation. This is the regime where Mott claims that the
conductivity decreases asg2 in accordance with equation (1).

Figure 1(a) and (b) reproduce the Ge concentration dependence of the resistivity at 300 K
together with that of the Hall coefficient for a series of the amorphous(Ag0.5Cu0.5)100−xGex
alloys [5–8]. The data for the electronic specific heat coefficient are included in the inset
to figure 1(b). Here the corresponding free electron values calculated under the assumption
that Ag, Cu and Ge atoms donate one, one and four free electrons per atom, respectively,
are plotted as dashed curves. The ratio of the electronic specific heat coefficient over
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Figure 1. Ge concentration dependence of (a) the resistivity at 300 K and (b) the Hall coefficient
at 300 K in the amorphous(Ag0.5Cu0.5)100−xGex alloys [5–8]. Inset shows that of the electronic
specific heat coefficient. Dashed curves are obtained in the free electron model.

the corresponding free electron value agrees very well with that calculated from the Hall
coefficient (see figure 5(a)). Hence, theg-parameter can be equally determined in this
system either from the electronic specific heat coefficient or from the Hall coefficient. It is
shown that theg-parameter remains unity up tox = 30 but decreases sharply with further
increase in the Ge concentration.

The conductivity at 300 K for a series of the amorphous(Ag0.5Cu0.5)100−xGex alloys
is plotted in figure 2 on the log–log scale against theg-parameter determined from the
Hall coefficient, together with the data for expanded liquid mercury [4, 5]. The data for the
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amorphous(Ag0.5Cu0.5)100−xGex (x 6 30) alloys and expanded liquid mercury possessing
conductivities higher than approximately 3000�−1 cm−1 fall on the vertical line withg = 1.
This is the regime to which the theory based on the Boltzmann transport equation can be
applied. In contrast, the data for the amorphous(Ag0.5Cu0.5)100−xGex (x > 40) alloys and
the expanded liquid mercury below about 3000�−1 cm−1 are fitted to a straight line with
a slope of+2. We see from figure 2 that, once the pseudogap appears at the Fermi level
and theg-parameter is lowered below unity, the conductivity decreases in proportion to the
square of theg-parameter in an excellent agreement with the Mott theory.

Figure 2. Conductivity as a function of theg-parameter on the log–log scales. Note that each
straight line has the slope of+2.

Our next objective is to see whether theg2-dependence of conductivity holds in sp-
electron quasicrystals and approximants possessing the pseudogap at the Fermi level. For
this particular purpose, we choose the AlxMg39.5Zn60.5−x 1/1-approximants (20.5 6 x 6
50.5) and AlxMg44Zn56−x (13 6 x 6 25) icosahedral quasicrystals, since their electronic
structure, atomic structure and electron transport properties have been thoroughly studied
from both experimental and theoretical approaches [9–11]. The XPS valence band studies
and the electronic specific heat measurements clearly showed the existence of the pseudogap
at the Fermi level in all compounds except for the 1/1-approximant containing the highest
amount of Al withx = 50.5. Indeed, the XPS measurements revealed that the pseudogap at
the Fermi level becomes apparently shallower with increasing Al concentrationx and almost
vanishes atx = 50.5 within the accuracy of the measurement. The electronic specific heat
coefficient in the 1/1-approximants is found to increase with increasing Al concentration
and to approach the free electron value atx = 50.5.

The realistic band calculations [10] have been made for a series of AlxMg40Zn60−x
(156 x 6 52.5) 1/1-approximants in the framework of the LMTO–ASA method by using
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the atomic structure determined by the Rietveld method [11]. It clearly demonstrated that
the Fermi level moves across the pseudogap with increasing Al concentrationx and almost
escapes from the pseudogap atx = 52.5. Judging from both experimental and theoretical
studies, we can assume theg-parameter for the 1/1-approximant withx = 50.5 to be equal
to unity. Theg-parameter for the remaining 1/1-approximants and quasicrystals may be
evaluated by taking the ratio of the measured electronic specific heat coefficient [9] over
that of thex = 50.5 sample. Theg-parameter dependence of conductivity at 300 K thus
obtained is included in figure 2. Clearly the conductivity for the Al–Mg–Zn approximants
together with the quasicrystals follows well theg2-dependence. From this we conclude that
the g2-dependence of conductivity holds, whenever the Fermi level falls in the pseudogap
for either a disordered system like amorphous alloys or an ordered system like quasicrystals
and their approximants.

3. (N (EF ))2 dependence of the conductivity in sp- and d-electron systems

Equation (1) contains a profound implication. As noted in section 2, it is reduced to the
free electron expressionσ0 = e23

free

F S
f ree

F /12π3h̄ wheng > 1 or very close to unity. The
g2-dependence in equation (1) appears only when the Fermi level falls in the pseudogap
andg is lowered below unity. The latter cannot be deduced from the nearly free electron
approximation. Mott [12] demonstrated the validity of theg2-dependence in equation (1) by
employing the Kubo–Greenwood formula, which is applicable even to the strong scattering
limit of 3F ≈ a, and obtained the following conductivity formula for a Fermi gas at 0 K
within the tight-binding approximation:

σ0 = ρ−1
0 =

πe2a5zI 2

h̄
{N(EF )}2 (2)

wherea is an average atomic distance,z is the coordination number of the constituent atom
andI is the hopping integral defined as

I =
∫
ψ∗i Hψj d3x (3)

whereψi is the wave function at the sitei and H is the Hamiltonian of the electron.
Equation (2) claims that the conductivity at 0 K or the inverse of the residual resistivity
increases with the square of the DOS at the Fermi level and that the smaller the overlap
of wave functions over the nearest neighbouring atoms the lower the conductivity is. The
validity of equation (2) may be tested by comparing the data for the sp-electron systems
with those for the d-electron systems.

The resistivity at 300 K rather than that at 4.2 K is plotted in figure 3 against the
measured electronic specific heat coefficientγ on the log–log diagram for amorphous alloys
in two different families. The first family includes the amorphous(Ag0.5Cu0.5)100−xGex
(20 6 x 6 60) [5, 7], (Ag0.5Cu0.5)77.5Si22.5 [13] and Mg70Zn30−xSnx (x = 0, 4, 6) [14]
alloys. Their DOSs at the Fermi level are scarcely affected by the d states. Because
of this, they are typical of the sp-electron system. The second family of the amorphous
Al 90−xNi10Six (10 6 x 6 30) and Al85−xNi15Six (15 6 x 6 35) alloys is specifically
designed to have only 10–15 at.% Ni in the Al–Si amorphous matrix. Hence, a small
amount of Ni–3d states coexists with the sp-electrons at the Fermi level and remains almost
unchanged with varying concentrationx. Thus, the two families of amorphous alloys are
selected such that the d-state contribution at the Fermi level is absent in the first but is
slightly present in the second one.
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Figure 3. Resistivity at 300 K as a function of the measured electronic specific heat coefficient
on the log–log scales for amorphous alloys in two different families. First family (◦):
(Ag0.5Cu0.5)100−xGex (20 6 x 6 60) [5], (Ag0.5Cu0.5)77.5Si22.5 [13] and Mg70Zn30−xSnx
(x = 0, 4, 6) [14] alloys. Second family (•): Al 99−xNi10Six (15 6 x 6 35), Al85−xNi15Six
(106 x 6 30) and Al60Ni10Ge30 [15]. Full and dashed lines having a slope of−2 are drawn
to pass through the data points for the first and second families, respectively.

It is clear from figure 3 that the data for the sp-electron amorphous alloys constitute a
sharp border line at the left edge with a slope of−2 in excellent agreement with equation (2).
It can be also seen that the data of the second family form another parallel straight line,
which is displaced to higher resistivities relative to the first one. The displacement may
be explained as a reduction in the hopping integralI in equation (2) in the second family
because of the mixture of the d electrons at the Fermi level. Note here that both sp and d
electrons at the Fermi level contribute to the electron transport in disordered systems where
the condition3F ≈ a is satisfied [5].

Encouraged by the validity of the argument above, we first attempted to plot in figure 4(a)
sets of the resistivity at 4.2 K and the electronic specific heat coefficientγ for a large number
of icosahedral quasicrystals and their approximants [9, 16–26]. We collected the data from
literature, in which bothρ andγ values are reported. The numerical data are summarized
in table 1 for two families of quasicrystals and approximants: one triacontahedron-type
sp-electron quasicrystals and the other Mackay icosahedral (MI) d-electron quasicrystals.
The former includes those consisting of only simple elements like Al–Mg–Zn, Al–Mg–Ag,
Al–Li–Cu and Mg–Zn–Ga and generally possesses resistivities lower than 1000µ� cm. A
total of 32 data points for sp-electron quasicrystals and their approximants are employed.
As shown in figure 4(a), the data points for sp-electron quasicrystals and their approximants
are well fitted to a universal line with a slope of−2. It is also noted that the data for
the amorphous(Ag0.5Cu0.5)100−xGex (206 x 6 60) alloys [5] plotted for comparison are
fitted to the same universal line. This confirms that the sp-electron quasicrystals and their
approximants satisfy theσ0 ∝ (N(EF ))2 relation very well, together with the sp-electron
amorphous alloys. It is noted that theg-parameter dependence of the conductivity shown
in figure 2 is specific to each sp-electron system but that the data points in figure 4(a) fall
on a universal line for all sp-electron systems.

A total of 17 data points are plotted in figure 4(a) for the MI-type quasicrystals. These
data points fall in the resistivity range above about 1000µ� cm and clearly deviate upward



Pseudogap in quasicrystals and approximants 4615

Table 1. Electronic specific heat coefficient and resistivities at 4.2 and 300 K for sp-electron
quasicrystals and their approximants and for Mackay icosahedral quasicrystals and approximants.

System γ (mJ mol−1 K−2) ρ4.2 K (µ� cm) ρ300 K (µ� cm) Reference

sp-electron quasicrystals
Al 25Mg44Zn31 0.99 98 92 [9]
Al 20Mg44Zn36 0.92 102 96
Al 16Mg44Zn40 0.77 132 123
Al 15Mg44Zn41 0.77 128 120
Al 13Mg44Zn43 0.85 104 98
Al 50.5Mg39.5Zn10 (FK)a 1.48 32 38
Al 45.5Mg39.5Zn15 (FK) 1.33 38 44
Al 40.5Mg39.5Zn20 (FK) 1.11 39 44
Al 35.5Mg39.5Zn25 (FK) 1.07 47 52
Al 30.5Mg39.5Zn30 (FK) 1.13 61 67
Al 25.5Mg39.5Zn35 (FK) 1.06 69 73
Al 20.5Mg39.5Zn40 (FK) 1.04 74 76
Al 42Mg44Pd14 0.62 238 221 [16]
Al 46Mg40Pd14 0.71 228 218
Al 50Mg36Pd14 (FK) 0.81 226 217
Al 75Cu15V10 1.07 102 107 [18]
Al 52.4Cu12.6Mg35 1.1 65 68
Al 25Mg37.5Zn37.5 0.92 76 79
Al 20Mg70Ag10 1.17 81 78 [19]
Al 40Mg50Ag10 1.15 93 90
Al 50Mg30Ag20 1.08 115 111
Al 51.9Mg35.8Cu12.3 1.15 ∼69 70
Al 48.2Mg39.5Cu12.3 1.19 ∼80 81
Al 44.5Mg43.2Cu12.3 1.17 ∼84 86
Al 54.0Mg39.5Cu6.5 1.38 ∼63 65
Al 51.1Mg39.5Cu9.4 1.17 ∼71 72
Al 45.3Mg39.5Cu15.2 1.11 ∼87 88
Mg39.5Zn40.0Ga20.5 0.99 154 143
Mg33.5Zn40.0Ga26.5 0.91 154 154
Mg36.5Zn43.0Ga20.5 0.82 172 157
Mg33.5Zn46.0Ga20.5 0.8 201 183
Al 55Li 35.8Cu9.2 0.318 870 800 [20]

MI quasicrystals
Al 52.5Mg20Pd27.5 (MI) 0.65 605 550 [17]
Al 52Mg18Pd30 (MI) 0.43 798 700
Al 62.5Cu26.5Fe11 0.32 3700 2280 [21]
Al 63.5Cu24.5Fe12 0.31 4350 2980
Al 62.5Cu26.5Fe11 r phase 0.25 5550 3450
Al 63Cu25Fe12 0.4 4375 2480 [22]
Al 63Cu25Fe12 0.345 4930 2793
Al 65Cu20Ru15 0.11 13 330 4677 [21]
Al 64.5Cu20Ru15Si0.5 0.27 5550 2775
Al 64Cu20Ru15Si1 0.21 3570 1950
Al 65Cu20Ru15 0.11 26 000 6500 [23]
Al 70Cu15Ru15 0.2 10 000 4400
Al 68Cu17Ru15 0.23 5600 2800
Al 70.5Pd21Re8.5 0.11 1000 000 16 000 [24]
Al 70.5Pd21Re8.5 0.15 450 000b 5 625b [25]
Al 67Pd23Re10 0.25 10 000 3030 [26]
Al 69Pd19Re12 0.28 1000 833

a FK stands for the Frank–Kasper compound and corresponds to the 1/1–1/1–/1 approximant to the quasicrystals
in this family.
b The resistivity value at 4 K and the ratioρ4 K/ρ300 K are reported in the thesis [25] to be 450 000µ� cm and
80, respectively, for which theγ value was measured.
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from the line drawn through the sp-electron quasicrystals and their approximants. The data
for the Al–Cu–Fe [21, 22] and Al–Cu–Ru [21, 23] quasicrystals may be fitted to another
straight line with a slope of−2. This may be explained in the same way as that discussed in
relation to figure 3, since the MI-type quasicrystals contain significant amounts of transition
metals as constituent elements. However, the situation in the almost insulating Al–Pd–Re
quasicrystal of high quality [24, 25] may be different.

The Al–Pd–Re quasicrystals are known to possess the highest resistivity in quasicrystals
so far reported and have been discussed as being marginal to the metal–insulator transition
[24–26]. Admittedly, however, the value of the resistivity at 4.2 K for the Al–Pd–Re
quasicrystal sensitively depends on quality and composition. As can be seen from figure 4(a),
the resistivity data at 4.2 K for the Al–Pd–Re quasicrystals of high quality [24, 25] deviate
further upward from the second universal line. This may be taken as an indication that the
Al–Pd–Re quasicrystal is no longer in the metallic regime.

Some caution is exercised in the analysis of theρ–γ data for the MI-type quasicrystals
with resistivities as high as 100 000µ� cm–1� cm in figure 4(a). In such a high resistivity
regime, the electronic specific heat coefficientγ becomes very low. The measured value
of γ may not represent the DOS at the Fermi level when it is reduced to the order of
0.1 mJ mol K−2. Here the contributions of the electron–phonon mass enhancement and
the two-level tunnelling effect may be properly subtracted to deduce the DOS at the Fermi
level.

A more serious difficulty stems from the choice of the resistivity at 4.2 K. The quantum
interference effect including the weak localization coupled with the enhanced electron–
electron interaction participates at such low temperatures in the strong scattering limit where
3F ≈ a. The Mott theory is certainly irrelevant to it. Hence,ρ4.2 K may not be chosen
as an appropriate quantity to examine the applicability of the Mott theory to such high
resistivity quasicrystals. Since the quantum interference effect diminishes with increasing
temperature, we consider it to be worthwhile constructing theρ–γ diagram by using the
resistivity at 300 K rather than the value at 4.2 K.

Figure 4(b) is constructed by replacingρ4.2 K in figure 4(a) by the corresponding value
at 300 K,ρ300 K. Note here that the deviation of the ratioρ4.2 K/ρ300 K from unity for the
sp-electron quasicrystals with resistivities less than 1000µ� cm is always less than 10%
and is so small that the data in figure 4(a) in this regime remain essentially unaffected.
However, the ratio is over 2 for the Al–Cu–Fe and Al–Cu–Ru quasicrystals [21] and even
reaches 5–80 for the Al–Pd–Re quasicrystals [24–26]. As a consequence, the data points
for the MI-type quasicrystals are lowered in theρ–γ diagram and happen to be closely
distributed along the universal line drawn through the sp-electron quasicrystals. This is
indeed surprising and may be indicative that the resistivity at 300 K, which is essentially
free from the quantum interference effect, obeys the Mott theory well and that a still existing
small upward deviation from the universal line for the Mackay-type quasicrystals is due to
the difference in the hopping integral between sp-electron and d-electron systems. But
further work is certainly needed to make this argument more decisive.

The reservation for this is that the discussion of the electron transport mechanism
on the ρ–γ diagram is meaningful only for metallic systems, where the Fermi cut-off
is well defined and the DOS at the Fermi level is finite at 0 K. A choice of the room
temperature resistivity would make a clear differentiation of metallic and insulating systems
more difficult. Moreover, the electron transport mechanism including the evaluation of
the contribution of the quantum interference effect in high resistivity quasicrystals has not
been well elucidated. For example, the temperature dependence of the conductivity for the
Al–Pd–Re quasicrystal of high quality is experimentally found to follow the power law
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Figure 4. Resistivity at (a) 4.2 and (b) 300 K as a function of the measured electronic specific
heat coefficient on the log–log diagram for quasicrystals and their approximants. The data (N)
for the amorphous Ag–Cu–Ge alloys shown in figure 3 are also included. A line with a slope of
−2 is drawn as a guide. The data of Al–Cu–Li and Ga–Mg–Zn in [18] are deliberately omitted
because of too large deviation from the universal line.

σ(T ) ∝ T 1.13 over a wide temperature range 0.3–600 K [25]. But no clear interpretation
has been put forward to explain this unique power law temperature dependence.

4. Comparison of the electron transport properties between amorphous alloys and
quasicrystals

We have so far shown that the pseudogap at the Fermi level gives rise to theσ0 ∝ (N(EF ))2
relation, being apparently independent of the mechanism for its formation. In this section, we
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Figure 5. Ratio of the free electron Hall coefficient over the measured Hall coefficientR
f ree

H /RH
(◦) and the ratio of the measured electronic specific heat coefficient over the free electron value
γexp/γf ree (•) for (a) amorphous(Ag0.5Cu0.5)100−xGex (0 6 x 6 95) alloys [5] and (b) the
AlxMg39.5Zn60.5−x (20.5 6 x 6 50.5) 1/1-approximants and AlxMg44Zn56−x (13 6 x 6 25)
quasicrystals [9]. The grey circles are used for the quasicrystals.

attempt to extract more specific features in the electron transport properties of quasicrystals
and their approximants in comparison with those for amorphous alloys typical of a disordered
system.

4.1. The Hall coefficient

The ratio of the free electron Hall coefficient over the measured oneR
free

H /RH for the
amorphous(Ag0.5Cu0.5)xGe100−x alloys [8] is plotted in figure 5(a) as a function of Ge
concentration, together with the ratio of the measured electronic specific heat coefficient
over the corresponding free electron value [5]. An excellent agreement can be seen between
the two sets of data. Indeed we have employed in figure 2 the ratio of the free electron Hall
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coefficient over the measured one as theg-parameter in the amorphous(Ag0.5Cu0.5)xGe100−x
alloys. In the case of the Al–Mg–Zn quasicrystals and their approximants, the ratio of the
electronic specific heat coefficient over that of the approximant withx = 50.5 can be used
as theg-parameter, as explained in section 2. What about the ratio of the Hall coefficient?

TheRfreeH /RH data for the Al–Mg–Zn quasicrystals and 1/1-approximants [9] are plotted
in figure 5(b) as a function of the Al concentration. It is clear that the ratio of the Hall
coefficient no longer coincides with theg-parameter derived from the electronic specific heat
coefficient. This is in sharp contrast to the data for the amorphous(Ag0.5Cu0.5)xGe100−x
alloys. The absence of sharp Brillouin zones in amorphous alloys must be responsible
for the agreement of the ratio of the Hall coefficient with theg-parameter derived from
the electronic specific heat coefficient. Instead, the quasicrystals and their approximants
possess the anisotropic electronic structure consisting of many small electron and hole
Fermi surfaces because of the presence of a large number of Brillouin zone planes [27]. If
the carrier densities of the electrons and holes can be calculated with a reasonable accuracy
from the Fermi surface thus obtained, then the application of the two-band model would
explain the breakdown of the correlation between the observed ratioR

free

H /RH and the
g-parameter.

4.2. Temperature dependence of the electrical resistivity

As discussed in section 3, the Al–Pd–Re quasicrystal of high quality is marginal to the metal–
insulator transition and the temperature dependence of its conductivity obeys a unique power
law over a wide temperature range. Apart from such complex transport behaviour in an
extremely high resistivity regime, the electron transport mechanism of quasicrystals in the
low resistivity regime is also interesting. Here we focus on the resistivity behaviour of the
Al–Mg–Zn quasicrystals and their approximants in comparison with that of the amorphous
(Ag0.5Cu0.5)100−xGex alloys, particularly in the range 06 x 6 30.

As shown in figure 1, the resistivity for the amorphous(Ag0.5Cu0.5)100−xGex alloys
increases from about 20 to 200µ� cm with increasing Ge concentration in the range
x = 0–30. The temperature dependence of the electrical resistivity for the amorphous
(Ag0.5Cu0.5)100−xGex alloys [7] is reproduced in figure 6(a). It has been argued [5, 28]
that the temperature dependence of the resistivity shown in figure 6(a) can be interpreted
within the framework of the Boltzmann transport equation into which the electron–phonon
interaction is incorporated and that the unique concentration dependence of the temperature
dependence of resistivity marked as types (a) to (c) reflects the decreasing mean free path
from above 20Å down to a value comparable to the average atomic distance of about 4Å.
This means that the condition3F > a is well satisfied. In addition, theg-parameter in the
rangex = 0–30 is experimentally determined to be unity. Therefore, the scattering involved
in the amorphous(Ag0.5Cu0.5)100−xGex alloys in the range 06 x 6 30 can be treated in
the nearly free electron model without invoking the quantum interference effect in excellent
agreement with the Mott theory.

Resistivities of the AlxMg39.5Zn60.5−x (20.5 6 x 6 50.5) 1/1 approximants and
Al xMg44Zn56−x (13 6 x 6 25) icosahedral quasicrystals are distributed over the
range 40–150µ� cm [9], being the same magnitudes as those of the amorphus
(Ag0.5Cu0.5)100−xGex (0 6 x 6 30) alloys. As shown in figure 6(b), its temperature
dependence is also very similar to that for the amorphous(Ag0.5Cu0.5)100−xGex (06 x 6 30)
alloys. Indeed, the TCR (temperature coefficient of resistivity) changes its sign from a
positive to a negative value with increasing resistivity in both systems. Therefore, as far
as the resistivity behaviour is concerned, no discernible difference can be seen between
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Figure 6. Temperature dependence of the electrical resistivity for (a) amorphous
(Ag0.5Cu0.5)100−xGex (06 x 6 30) alloys [5–7] and (b) the AlxMg39.5Zn60.5−x (25.5, 30.5 and
45.5) 1/1-approximants and Al15Mg44Zn41 quasicrystal [9]. Letters in the brackets in (a) mark
the ρ–T types (see its definition in [5]) and the arrow indicates the maximum in resistivity.

these two systems. However, there exists a sharp difference in the electronic structure
at the Fermi level between them. As has been discussed, the Al–Mg–Zn quasicrystals
and their 1/1-approximants possess the pseudogap characterized by theg-parameter in the
range 0.6 < g < 1 in sharp contrast to the possession ofg = 1 for the amorphous
(Ag0.5Cu0.5)100−xGex (06 x 6 30) alloys.

It is, therefore, interesting to discuss the reason for the absence of the quantum
interference effect in the AlxMg39.5Zn60.5−x (20.5 6 x 6 50.5) 1/1-approximants in spite
of the possession of the pseudogap at the Fermi level. The mean free path of conduction
electrons for the 1/1-approximants is estimated to be 15–20Å by inserting into the Drude
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expressionρ−1
0 = (e2/3)3FvFN(EF ) the residual resistivity and the electronic specific heat

coefficient. Here the Fermi velocityvF is estimated asg times the free electron value, since
the conductivity in this system is scaled in terms ofg2, as shown in figure 2. The mean
free path of the conduction electron thus obtained is much longer than an average atomic
distance and is even slightly longer than the lattice constant of 14.2Å in the 1/1-approximant.
Thus, conduction electrons are still able to recognize the periodicity of the lattice in the
1/1-approximant. This is the reason for the absence of the quantum interference effect and,
instead, for the validity of the discussion based on the Boltzmann transport equation for the
Al xMg39.5Zn60.5−x 1/1-approximants, despite the fact that the pseudogap exists at the Fermi
level.

Before ending this section, we direct our attention once again to the data shown in
figure 2, where the effect of the mean free path on the electron conduction is manifested.
The data for the three different systems can be fitted to their owng2-dependent straight lines.
The values of their intercepts with theg = 1 vertical line can be read off from figure 2
as 25 000, 5000 and 3000�−1 cm−1 for the Al–Mg–Zn approximants, the amorphous
(Ag0.5Cu0.5)100−xGex (x > 30) alloys and expanded liquid mercury, respectively. Hence,
the ratio of the conductivity of the approximant over that of the amorphous alloy is found to
be equal to five. Note that the mean free path of the conduction electron for the amorphous
(Ag0.5Cu0.5)100−xGex alloys, whenx exceeds 30, has been calculated to be about 4Å,
whereas that for the Al–Mg–Zn approximants is 15–20Å. Therefore, the ratio of the mean
free paths of the conduction electron of the approximant over that of the amorphous alloy
coincides well with the ratio of the intercepts above. In other words, the appearance of
three differentg2-dependent straight lines in figure 2 indicates that each system possesses
its own mean free path.

The data for the expanded liquid mercury are located below those for the amorphous
(Ag0.5Cu0.5)100−xGex alloys. This suggests the mean free path of the conduction electron
in the former to be shorter than that in the latter. We consider this to be plausible, since
only a single element is involved in liquid mercury as a constituent element. Indeed, an
average atomic distance for the expanded liquid mercury turns out to be 3Å from the
measured density [4] of 11 g cm−3. A shorter mean free path than that in the amorphous
(Ag0.5Cu0.5)100−xGex alloys withx > 40 would be responsible for the lower location of the
data for the expanded liquid mercury.

5. Universal relation σ0 ∝ (N (EF ))2 versus spiky peaks in calculated DOS

Band calculations so far made for various approximants are consistent with the findings of
the pseudogap across the Fermi level together with a number of spiky peaks in the DOS
spectrum [10, 27, 29, 30]. The latter originates from fairly flat energy dispersions as a result
of the folding into small first Brillouin zone. The presence of the pseudogap has been
confirmed by many experiments including the present work. However, the experimental
confirmation of the spiky peaks has been controversial. A narrow dip of about 50 meV
width was detected acrossEF in several quasicrystals by means of scanning tunnelling
spectroscopy (STS) and ascribed to the valley formed by the neighbouring spiky peaks
[31]. In contrast, photoemission spectroscopy measurements with a high resolution of
5 meV have failed to detect the spiky peaks in the valence band spectra for well qualified
quasicrystals cooled to 12 K [32].

As mentioned in section 2, the band calculations for the AlxMg39.5Zn60.5−x (20.56 x 6
50.5) 1/1-approximants [10] were made by using the atomic structure determined by the
x-ray Rietveld analysis [11]. The resulting spiky peaks are rather wide because of the lack
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of d states near the Fermi level and their width ranges over 50–100 meV. It is easily checked
that the calculated DOS at the Fermi level or the electronic specific heat coefficient varies
over 0.85–1.46 mJ mol K−2, depending on whether the Fermi level falls at the bottom of
the neighbouring spiky peaks or at the top of the peak within the energy range of 100 meV.
Thus, spiky peaks had to be smoothed out in the calculated DOS to obtain a systematic Al
concentration dependence of theγ value. A good agreement with the observedγ values
was achieved only after smoothing. This means that only smoothed DOS is apparently
measured.

In the present studies, we have established the DOS square dependence of the resistivity
for a large number of quasicrystals and their approximants. This is taken as another evidence
that these two quantities are indeed well defined for given quasicrystals and approximants
and reflect only the smoothed pseudogap at the Fermi level. Otherwise, the data would
have scattered on theρ–γ diagram and have shown no universal relation. We believe that
the present results lend support to the observation of the smoothed DOS at the Fermi level
in both quasicrystals and their approximants.

The presence of chemical disordering has been emphasized in the atomic structure
analysis of the 1/1-approximants [11, 33]. Such chemical disordering is ignored in the
band calculations mentioned above [10]. We consider the composition fluctuations inherent
in quasicrystals and their approximants even of high quality to be partly responsible for
observing smoothed DOS at the Fermi level. A use of a massive sample for measurements
like specific heat, resistivity and photoemission spectroscopy also contributes to averaging
the fine structure of the DOS. The spikiness of the DOS may be observed only when the
electronic structure is studied by an atomic-scale probe like the STS or perhaps electron
energy loss spectroscopy (EELS) with the resolution better than 50 meV.

6. Conclusion

We have constructed theρ–γ diagram for a total of 49 quasicrystals and their approximants
together with sp-electron amorphous alloys, all of which are characterized by the possession
of the pseudogap atEF , and proved that the resistivity particularly at 300 K obeys
well the relationρ ∝ (N(EF ))

−2 in excellent agreement with the Mott theory. Here
the Al–Pd–Re quasicrystal of high quality is excluded from this universal rule at the
moment. Further detailed experimental and theoretical work for the MI-type icosahedral
quasicrystals, particularly the Al–Pd–Re, must be pursued along this line. The electron
transport mechanism of the sp-electron quasicrystals is discussed in comparison with that
of sp-electron amorphous alloys by focusing on the absence of the correlation between
the observed ratioRfreeH /RH and theg-parameter and the temperature dependence of the
electrical resistivity over the range 2–300 K. It is also emphasized that the present results
are consistent with the observation of the smoothed pseudogap at the Fermi level obtained
after averaging the spiky peaks in the calculated DOS.
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